

Available online at www.sciencedirect.com

Journal of Organometallic Chemistry 692 (2007) 4389-4396

www.elsevier.com/locate/jorganchem

N, *O*-ligand accelerated zinc-catalyzed transesterification of alcohols with vinyl esters

Takashi Mino *, Tae Hasegawa, Yoshiaki Shirae, Masami Sakamoto, Tsutomu Fujita

Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan

Received 13 June 2007; received in revised form 4 July 2007; accepted 10 July 2007 Available online 13 July 2007

Abstract

N-Phenyldiethanolamine (1f) is an efficient ligand for zinc-catalyzed transesterification of alcohols with vinyl acetate ($R^3 = Me$) at room temperature. In the case of using other vinyl esters ($R^3 = Et$, *n*-Pr, Ph), the corresponding products were easily obtained in the presence of pyridine-type ligand 2 instead of aminoalcohol 1f. © 2007 Elsevier B.V. All rights reserved.

Keywords: Zinc catalyst; Alcohol; Ester; Transesterification

1. Introduction

Transesterification is a convenient method for preparation of versatile esters from inexpensive alcohols and esters [1]. Acidic [2] or basic [3] catalysts are commonly used to promote this reaction in heating, but they sometimes exhibit low chemoselectivity, and labile functional groups can be damaged. They may also lead to the formation of side products. Recently, the Nolan groups and the Hedrick groups independently reported transesterification of alcohols using N-heterocyclic carbene type catalysts [4]. In this case, not only vinyl esters but also alkyl esters such as ethyl acetate and methyl benzoate were effective acylation reagents at room temperature. On the other hand, organometallic catalysts such as Cp₂^{*}Sm(thf)₂ [5] distannoxanes [6], and tin(IV) amide with fluorous tag [7], or the basic iminophosphoranes [8], iodine [9], ammonium triflate derivatives [10] are better than simple acids, however they still require heating conditions or long times to complete the reaction. We report here an efficient method of transesterification using Et_2Zn with 1 or 2 as ligands with vinyl esters as acylation reagents under mild conditions [11].

2. Results and discussion

We investigated the effect of ligands for the zinc-promoted transesterification of benzyl alcohol with vinyl acetate in toluene as a solvent at room temperature (Table 1). Without a ligand and Et₂Zn, the reaction did not occur (Entry 1). Using Et₂Zn as a catalyst, the reaction occurred, but we obtained benzyl acetate in a low yield (Entry 2). We next investigated effect of ligands 1 and 2. The zinc complex from 5 mol% of ligand and 10 mol% of Et₂Zn was used as a catalyst. Using ligands 1a–c led to lower yields compared to the case without ligands (Entry 2 vs. Entries 3–5). *N*-benzyldiethanolamine (1d), its derivative 1e and pyridine-type ligand 2 led to moderate yields (Entries 6, 7 and 9). When *N*-phenyldiethanolamine (1f) was employed, the reaction yielded the desired product quantitatively in 1 h (Entry 8).

In the presence of **1f** as a ligand, the effect of solvents was examined. Using hexane as a solvent, instead

^{*} Corresponding author. Tel.: +81 43 290 3385; fax: +81 43 290 3401. *E-mail address:* tmino@faculty.chiba-u.jp (T. Mino).

⁰⁰²²⁻³²⁸X/\$ - see front matter © 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.jorganchem.2007.07.008

Table 1

Optimization of reaction conditions on the transesterification of benzyl alcohol with vinyl acetate^a

ОН	ligand	OAc	
	solv., rt, 1 h		
		3a	

Entry	Ligand (mol%)	mol% of Et_2Zn	Solvent	Yield (%) ^b
1	_	_	PhMe	0
2	_	10	PhMe	30
3	1a (5)	10	PhMe	4
4	1b (5)	10	PhMe	8
5	1c (5)	10	PhMe	16
6	1d (5)	10	PhMe	46
7	1e (5)	10	PhMe	52
8	1f (5)	10	PhMe	99 (90) ^c
9	2 (5)	10	PhMe	$(76)^{c}$
10	1f (5)	10	Hexane	81
11	1f (5)	10	THF	27
12	1f (5)	10	MeCN	7
13	1f (5)	10	AcOEt	16
14	1f (5)	10	CHCl ₃	1

^a Reaction conditions: PhCH₂OH (1 mmol), vinyl acetate (5 mmol), ligand, Et₂Zn in hexane (1.0 M), solvent (2 mL).

^b Determined by ¹H NMR.

^c Values in parenthesis are isolated yields.

of toluene, led to also good yield (Entry 8 vs. Entry 10). By contrast, polar solvents such as THF, acetonitrile, ethyl acetate, and chloroform were less effective (Entries 11-14). Thus, non-polar solvents were more suitable for this reaction.

Under optimized reaction conditions, transesterifications of vinyl acetate with various primary alcohols bearing a variety of functional groups were carried out at room temperature, and the results are summarized in Table 2.

4-Methoxybenzyl alcohol and 4-chlorobenzyl alcohol were smoothly converted into the corresponding acetates (Entries 1 and 2). The reaction of the benzylic alcohol with ester moiety in its molecule required a longer reaction time, but no side product was identified (Entry 3). This means that the methyl ester moiety is less reactive compared to the vinyl acetate and does not take part in the transesterification. ortho-, meta-, and para-methylbenzyl alcohols were also treated with vinyl acetate, which led to high yields. No steric effect was observed, nor did any electronic influence result from the difference of the position of the methyl group (Entries 4-6). 1-Naphthalenemethanol was also easily acylated into the desired ester (Entry 7). Allylic alcohols such as cinnamyl alcohol and geraniol also led to good yields (Entries 8 and 9). Phenethyl alcohol, 2-phenyl-1-propanol, and 3-phenyl-1propanol reacted equally well, giving the corresponding acetates in good yields (Entries 10–12). Saturated linear alcohol such as decanol, was effectively acylated in a high yield (Entry 13). The transesterification of alcohols bearing acid-sensitive functional groups, such as 2-hydroxymethyl-1,4-benzodioxane, led to the desired products

(Entry 14). There was no side product but the reaction required much a longer reaction time.

Based on the result of the acylation of various primary alcohols with vinyl acetate, we tested the transesterification of steric hindered secondary alcohols with vinyl acetate (Table 3). In the presence of 10 mol% of **1f** and 20 mol% of Et_2Zn at room temperature, benzylic secondary alcohols, such as 1-phenylethanol and 1-(2-naphthyl)ethanol, produced moderate to good yields (Entries 1 and 2). Allylic secondary alcohol such as *trans*-piperitol and saturated secondary alcohols such as borneol and menthol also led to good yields in the presence of 20 mol% of **1f** and 40 mol% of Et_2Zn (Entries 3–5). When pyridine-type ligand **2** was used, the desired product obtained in moderate yield (Entry 6).

We next attempted esterification with other vinyl esters such as vinyl propionate, butyrate, and benzoate [12] (Table 4). In the case of vinyl propionate, the benzyl esters were obtained low yield using 5 mol% of **1f** and 10 mol% of Et_2Zn (Entry 1). When the reaction was carried out in the presence of pyridine-type ligand **2** instead of aminoalcohol **1f**, the corresponding product was obtained in good yield (Entry 2). Under this condition, other benzyl esters and cinnamyl esters were easily prepared in good yields. (Entries 3–7).

In summary, we found that various esters were easily obtained from alcohols and vinyl esters in the presence of catalytic amount of Et_2Zn with 1f or 2 as a ligand at room temperature.

3. Experimental

3.1. General methods

All the experiments were carried out under an argon atmosphere. NMR spectra were recorded on a Bruker DPX-300 spectrometer. Chemical shifts are reported in δ ppm referenced to an internal SiMe₄ standard for ¹H and ¹³C NMR. Mass spectra were recorded on a GCMS-QP 5050, JEOL JMS-AX500, or JEOL JMS-HX110. **1a–c** and **1f** are commercially available. **1d** [13] and **2** [14] were similarly prepared according to the literature methods.

3.2. Preparation of aminoalcohol 1e

A solution of phenylmagnesium bromide (30 mmol) in THF (23 mL) was added to diethyl *N*-benzyliminodiacetate (1.53 g, 6.0 mmol) in THF (15 mL) at room temperature. The mixture was stirred for overnight. The mixture was added sat. NH₄Cl aq. and diluted with ethyl acetate. The organic layer was washed with brine, dried over MgSO₄, and concentrated under reduced pressure. The crude product was purified by recrystallization from hexane–chloroform: 0.298 g, 0.60 mmol, 10% as a white solid; m.p. 147–150 °C; ¹H NMR (DMSO-*d*) δ : 3.26 (s, 2H), 3.43 (s, 4H), 5.87 (s, 2H), 6.75–6.85 (m, 2H), 7.09–7.33 (m, 23H);

Table 2 Transesterification of primary alcohols with vinyl acetate^a

Entry	Alcohol	Time (h)	Product	Yield (%) ^b
1	MeO	3	MeO 3b	78
2	СІ	2	CI OAc 3c	90
3°	MeOOC	24	MeOOC OAc	64
4	Ме	3	Me OAc	87
5	OH Me	3	OAc Me 3f	88
6	OH	3	OAc Me 3g	92
7	ОН	2.5	OAc 3h	97
8	Ph	5	Ph OAc 3i	95
9°	ОН	4	OAc 3j	97
10	Ph	4	Ph OAc 3k	96

(continued on next page)

Table 2	(continued)
---------	-------------

Entry	Alcohol	Time (h)	Product	Yield (%) ^b
11	Рһ	5	Ph OAc 3l	91
12	Ph OH	6	Ph OAc 3m	90
13°	(~) ⁸ .0H	5	$()^{8}$ OAc 3n	97
14	ОН	24	OAc 30	79

^a Reaction conditions: alcohol (1 mmol), vinyl acetate (5 mmol), ligand **1f** (5 mol%), Et_2Zn (10 mol%) in hexane (1.0 M, 0.1 mL), PhMe (2 mL), rt. ^b Isolated yields.

^c 10 mol% of 1f and 20 mol% of Et_2Zn were used under 0.5 mmol scale reaction.

Transesterification of secondary alcohols with vinyl acetate^a

^a Reaction conditions: alcohol (1 mmol), vinyl acetate (5 mmol), ligand 1f, Et₂Zn in hexane (1.0 M), PhMe (2 mL), rt, 24 h.

^b Isolated yields.

^c This reaction was carried out using **2** instead of **1f**.

Table 3

Table 4 Transesterification of alcohols with vinyl esters^a

Entry	Alcohol	Vinyl ester	Ligand	Time (h)	Product	Yield (%) ^b
1 2	ОН		1f 2	3 2.5		47° 90
3		o ∩_nPr	2	2.5	5 O O NPr	88
4		O Ph	2	5	O Ph 6	92
5				3	Ph 7	90
6	Ph	^O [™] O [™] ⁿ Pr	2	3	Ph O ⁿ Pr 8	94
7		O Ph		4	Ph 9	92

^a Reaction conditions: alcohol (1 mmol), vinyl acetate (5 mmol), ligand (5 mol%), Et₂Zn (10 mol%) in hexane (1.0 M, 0.1 mL), PhMe (2 mL), rt.

^b Isolated yields.

^c Determined by ¹H NMR.

¹³C NMR (DMSO-*d*) δ : 59.4, 64.9, 77.0, 126.5, 126.7, 127.1, 128.1, 128.4, 129.3, 139.1, 147.6; FAB-MS *m/z* (rel. intensity) 500 (M⁺+1, 43); HRMS (FAB-MS) *m/z*. Calc. for C₃₅H₃₄O₂N+H 500.2590. Found 500.2623.

3.3. General procedure of transesterification of alcohol with vinyl ester

Under an atmosphere of argon, Et_2Zn (0.1 mmol) in hexane (1.0 M, 0.1 mL) was added to the solution of ligand 1 or 2 (0.05 mmol) in PhMe (1 mL) and the mixture was stirred for 0.5 h at room temperature. A mixture of alcohol (1 mmol) and vinyl ester (5 mmol) in PhMe (1 mL) was added to the reaction mixture. After being stirred for corresponding period, the reaction mixture was diluted with diethyl ether and quenched with water. The organic layer was washed with brine, dried over MgSO₄, and concentrated under reduced pressure. The residue was purified by silica gel chromatography.

3.3.1. Benzyl acetate (3a) [15]

90% as a colorless liquid; ¹H NMR (CDCl₃) δ : 2.08 (s, 3H), 5.09 (s, 2H), 7.25–7.39 (m, 5H); ¹³C NMR (CDCl₃) δ : 20.7, 66.0, 128.02, 128.05, 128.3, 135.8, 170.6; EI-MS *m*/*z* (rel. intensity) 150 (M⁺, 35).

3.3.2. 4-Methoxybenzyl acetate (3b) [16]

78% as a colorless liquid; ¹H NMR (CDCl₃) δ : 2.07 (s, 3H), 3.80 (s, 3H), 5.04 (s, 2H), 6.83–6.94 (m, 2H), 7.22–7.34 (m, 2H); ¹³C NMR (CDCl₃) δ : 21.1, 55.3, 66.1, 114.0, 128.1, 130.2, 159.7, 171.0; EI-MS *m*/*z* (rel. intensity) 180 (M⁺, 43).

3.3.3. 4-Chlorobenzyl acetate (*3c*) [17]

90% as a colorless liquid; ¹H NMR (CDCl₃) δ : 2.10 (s, 3H), 5.06 (s, 2H), 7.23–7.38 (m, 4H); ¹³C NMR (CDCl₃) δ : 21.0, 65.4, 128.7, 129.6, 134.1, 134.4, 170.7; EI-MS *m*/*z* (rel. intensity) 184 (M⁺, 31).

3.3.4. Methyl 4-(acetoxymethyl)benzoate (3d)

64% as colorless liquid; ¹H NMR (CDCl₃) δ: 2.13 (s, 3H), 3.92 (s, 3H), 5.15 (s, 2H), 7.41 (d, J = 8.2 Hz, 2H), 8.03 (dd, J = 1.7 and 6.6 Hz, 2H); ¹³C NMR (CDCl₃) δ: 23.2, 54.5, 67.8, 130.0, 132.18, 132.23, 143.3, 169.0, 173.0; FAB-MS m/z (rel. intensity) 209 (M⁺+1, 100); HRMS (FAB-MS) m/z. Calc. for C₁₁H₁₂O₄+H 209.0814. Found 209.0824.

3.3.5. 4-Methybenzyl acetate (3e) [18]

87% as a colorless liquid; ¹H NMR (CDCl₃) δ: 2.08 (s, 3H), 2.34 (s, 3H), 5.06 (s, 2H), 7.16 (d, J = 8.0 Hz, 2H), 7.24 (d, J = 8.0 Hz, 2H); ¹³C NMR (CDCl₃) δ : 21.0, 21.2, 66.3, 128.5, 129.3, 132.9, 138.1, 170.9; EI-MS m/z (rel. intensity) 164 (M⁺, 50).

3.3.6. 3-Methybenzyl acetate (3f) [19]

88% as a colorless liquid; ¹H NMR (CDCl₃) δ: 2.09 (s, 3H), 2.35 (s, 3H), 5.06 (s, 2H), 7.07–7.31 (m, 4H); ¹³C NMR (CDCl₃) δ: 21.0, 21.4, 66.4, 125.4, 128.5, 129.0 (C × 2), 135.8, 138.3, 170.9; EI-MS m/z (rel. intensity) 164 (M⁺, 39).

3.3.7. 2-Methybenzyl acetate (**3g**) [20]

92% as a colorless liquid; ¹H NMR (CDCl₃) δ : 2.09 (s, 3H), 2.35 (s, 3H), 5.12 (s, 2H), 7.12–7.39 (m, 4H); ¹³C NMR (CDCl₃) δ : 18.9, 21.0, 64.7, 126.0, 128.6, 129.2, 130.4, 133.8, 137.0, 171.0; EI-MS *m*/*z* (rel. intensity) 164 (M⁺, 0.7).

3.3.8. (1-Naphthalenyl)methyl acetate (3h) [21]

97% as a colorless liquid; ¹H NMR (CDCl₃) δ : 2.10 (s, 3H), 5.56 (s, 2H), 7.42–7.60 (m, 4H), 7.78–7.92 (m, 2H), 7.95–8.05 (m, 1H); ¹³C NMR (CDCl₃) δ : 21.1, 64.6, 123.6, 125.3, 126.0, 126.6, 127.5, 128.8, 129.4, 131.5, 131.6, 133.8, 171.0; EI-MS *m/z* (rel. intensity) 200 (M⁺, 60).

3.3.9. Cinnamyl acetate (3i) [15]

96% as a colorless liquid; ¹H NMR (CDCl₃) δ : 2.03 (s, 3H), 4.66 (dd, J = 1.2 and 6.5 Hz, 2H), 6.22 (td, J = 6.5 and 15.9 Hz, 1H), 6.58 (d, J = 15.9 Hz, 1H), 7.11–7.39 (m, 5H); ¹³C NMR (CDCl₃) δ : 21.0, 65.1, 123.1, 126.6, 128.1, 128.6, 134.2, 136.2, 170.8; FAB-MS m/z (rel. intensity) 176 (M⁺, 32).

3.3.10. Geranyl acetate (**3***j*) [15]

97% as a colorless liquid; ¹H NMR (CDCl₃) δ : 1.60 (s, 3H), 1.68 (s, 3H), 1.71 (s, 3H), 1.99–2.17 (m, 4H), 2.06 (s, 3H), 4.72 (d, J = 7.1 Hz, 2H), 5.03–5.15 (m, 1H), 5.30–5.39 (m, 1H); ¹³C NMR (CDCl₃) δ : 16.4, 17.7, 21.0, 25.7, 26.3, 39.5, 61.4, 118.2, 123.7, 131.8, 142.2, 171.1; EI-MS m/z (rel. intensity) 196 (M⁺, 0.08).

3.3.11. Phenethyl acetate (3k) [15]

96% as a colorless liquid; ¹H NMR (CDCl₃) δ : 2.01 (s, 3H), 2.92 (t, J = 7.1 Hz, 3H), 4.26 (t, J = 7.1 Hz, 2H), 7.08–7.36 (m, 5H); ¹³C NMR (CDCl₃) δ : 21.0, 35.1, 64.9, 126.6, 128.5, 128.9, 137.8, 171.0; EI-MS m/z (rel. intensity) 165 (M⁺+1, 0.03).

3.3.12. 2-Phenylpropyl acetate (31) [22]

91% as a colorless liquid; ¹H NMR (CDCl₃) δ : 1.30 (d, J = 7.0 Hz, 3H), 2.00 (s, 3H), 3.09 (sextet, J = 7.0 Hz, 1H), 4.04–4.21 (m, 2H), 7.10–7.39 (m, 5H); ¹³C NMR (CDCl₃) δ : 18.1, 20.9, 38.9, 69.4, 126.7, 127.3, 128.5, 143.2, 171.1; EI-MS m/z (rel. intensity) 178 (M⁺, 22).

3.3.13. 3-Phenylpropyl acetate (3m) [23]

90% as a colorless liquid; ¹H NMR (CDCl₃) δ : 1.88–2.02 (m, 2H), 2.05 (s, 3H), 2.63–2.74 (m, 2H), 4.10 (q, J = 6.6 Hz, 2H), 7.11–7.23 (m, 3H), 7.23–7.34 (m, 2H); ¹³C NMR (CDCl₃) δ : 21.0, 30.2, 32.2, 63.8, 126.0, 128.4, 128.4, 141.2, 171.2; EI-MS m/z (rel. intensity) 178 (M⁺, 0.11).

3.3.14. Decyl acetate (3n) [24]

97% as a colorless liquid; ¹H NMR (CDCl₃) δ : 0.88 (t, J = 6.8 Hz, 3H), 1.18–1.41 (m, 14H), 1.62 (quintet, J = 7.0 Hz, 2H), 2.05 (s, 3H), 4.05 (t, J = 6.8 Hz, 2H) ; ¹³C NMR (CDCl₃) δ : 14.5, 21.4, 23.1, 26.3, 29.0, 29.66, 29.71, 29.9, 32.3, 65.1, 171.7; EI-MS m/z (rel. intensity) 201 (M⁺+1, 1).

3.3.15. 2-Acetoxymethyl-1,4-benzodioxane (30) [25]

79% as a yellow liquid; ¹H NMR (CDCl₃) δ : 2.07 (s, 3H), 4.01 (dd, J = 6.8 and 11.4 Hz, 1H), 4.17–4.42 (m, 4H), 6.67–6.95 (m, 4H) ; ¹³C NMR (CDCl₃) δ : 20.8, 62.6, 65.1, 70.9, 117.3, 117.5, 121.7, 142.8, 143.0, 170.6; EI-MS m/z (rel. intensity) 208 (M⁺, 37).

3.3.16. 1-Phenylethyl acetate (**3p**) [15]

71% as a colorless liquid; ¹H NMR (CDCl₃) δ : 1.53 (d, J = 6.6 Hz, 3H), 2.06 (s, 3H), 5.88 (q, J = 6.6 Hz, 1H), 7.21–7.42 (m, 5H); ¹³C NMR (CDCl₃) δ : 21.3, 22.2, 72.3, 126.1, 127.9, 128.5, 141.7, 170.3; EI-MS m/z (rel. intensity) 164 (M⁺, 24).

3.3.17. 1-(2-Naphthyl)ethyl acetate (3q) [26]

85% as a colorless liquid; ¹H NMR (CDCl₃) δ: 1.62 (d, J = 6.6 Hz, 3H), 2.09 (s, 3H), 6.05 (q, J = 6.6 Hz, 1H), 7.41–7.53 (m, 3H), 7.71–7.92 (m, 4H); ¹³C NMR (CDCl₃) δ: 21.4, 22.2, 72.4, 124.1, 125.0, 126.0, 126.2, 127.7, 128.0, 128.4, 133.0, 133.2, 139.0, 170.4; EI-MS m/z(rel. intensity) 214 (M⁺, 25).

3.3.18. trans-Piperityl acetate (3r) [27]

79% as a colorless liquid; ¹H NMR (CDCl₃) δ : 0.84 (d, J = 6.9 Hz, 3H), 0.95 (d, J = 6.9 Hz, 3H), 1.33–1.56 (m, 2H), 1.63–1.80 (m, 5H), 1.92–2.02 (m, 2H), 2.06 (s, 3H), 5.21–5.36 (m, 2H); ¹³C NMR (CDCl₃) δ : 17.9, 20.9, 21.1, 21.5, 23.2, 26.8, 29.5, 43.9, 72.1, 120.8, 139.8, 171.2; EI-MS *m*/*z* (rel. intensity) 196 (M⁺, 2).

3.3.19. Bornyl acetate (3s) [15]

86% as a colorless liquid; ¹H NMR (CDCl₃) δ: 0.83 (s, 3H), 0.87 (s, 3H), 0.90 (s, 3H), 0.97 (dd, J = 3.5 and 13.7 Hz, 1H), 1.16–1.38 (m, 2H), 1.61–1.82 (m, 2H), 1.86–2.00 (m, 1H), 2.06 (s, 3H), 2.28–2.42 (m, 1H), 4.88 (ddd, J = 1.3, 5.6 and 10.0 Hz, 1H); ¹³C NMR (CDCl₃) δ: 13.4, 18.8, 19.6, 21.2, 27.0, 28.0, 36.7, 44.8, 47.7, 48.6, 79.8, 171.4; EI-MS m/z (rel. intensity) 196 (M⁺, 1.5).

3.3.20. Mentyl acetate (3t) [15]

91% as a colorless liquid; ¹H NMR (CDCl₃) δ : 0.76 (d, J = 7.0 Hz, 3H), 0.82–1.15 (m, 9H), 1.21–1.59 (m, 2H), 1.60–1.75 (m, 2H), 1.79–1.93 (m, 1H), 1.94–2.11 (m, 1H), 2.03 (s, 3H), 4.68 (td, J = 4.4 and 10.9 Hz, 1H); ¹³C NMR (CDCl₃) δ : 16.3, 20.6, 21.2, 21.9, 23.4, 26.2, 31.3, 34.2, 30.9, 46.9, 74.1, 170.6; EI-MS m/z (rel. intensity) 199 (M⁺+1, 0.01).

3.3.21. Benzyl propanoate (4) [28]

90% as a colorless liquid; ¹H NMR (CDCl₃) δ : 1.16 (t, J = 7.5 Hz, 3H), 2.38 (q, J = 7.6 Hz, 2H), 5.12 (s, 2H), 7.26–7.42 (m, 5H); ¹³C NMR (CDCl₃) δ : 9.5, 28.0, 66.6, 128.6, 129.0, 136.5, 174.7; EI-MS m/z (rel. intensity) 164 (M⁺, 23).

3.3.22. Benzyl butanoate (5) [15]

88% as a colorless liquid; ¹H NMR (CDCl₃) δ: 0.94 (t, J = 7.4 Hz, 3H), 1.67 (sextet, J = 7.4 Hz, 2H), 2.33 (t, J = 7.4 Hz, 2H), 5.11 (s, 2H), 7.27–7.40 (m, 5H); ¹³C NMR (CDCl₃) δ: 14.1, 18.9, 36.6, 66.5, 128.6, 129.0, 136.6, 173.9; EI-MS m/z (rel. intensity) 178 (M⁺, 23).

3.3.23. Benzyl benzoate (6) [15]

92% as a colorless liquid; ¹H NMR (CDCl₃) δ : 5.36 (s, 2H), 7.29–7.49 (m, 7H), 7.50–7.60 (m, 1H), 8.02–8.13 (m, 2H); ¹³C NMR (CDCl₃) δ : 66.7, 128.2, 128.3, 128.4, 128.7, 129.8, 130.2, 133.1, 136.1, 166.5; EI-MS *m/z* (rel. intensity) 212 (M⁺, 21).

3.3.24. Cinnamyl propanoate (7) [29]

90% as a colorless liquid; ¹H NMR (CDCl₃) δ : 1.17 (t, J = 7.5 Hz, 3H), 2.38 (q, J = 7.6 Hz, 2H), 4.73 (dd, J = 1.1 and 6.4 Hz, 2H), 6.29 (td, J = 6.4 and 15.9 Hz, 1H), 6.65 (d, J = 15.9 Hz, 1H), 7.17–7.44 (m, 5H); ¹³C NMR (CDCl₃) δ : 9.5, 28.0, 65.3, 123.8, 127.0, 128.5, 129.0, 134.5, 136.7, 174.7; EI-MS m/z (rel. intensity) 190 (M⁺, 14).

3.3.25. *Cinnamyl butanoate* (8) [30]

94% as a colorless liquid; ¹H NMR (CDCl₃) δ : 0.97 (t, J = 7.4 Hz, 3H), 1.57–1.78 (m, 2H), 2.33 (t, J = 7.4 Hz, 2H), 4.73 (d, J = 6.4 Hz, 2H), 6.28 (td, J = 6.4 and 15.9 Hz, 1H), 6.64 (d, J = 15.9 Hz, 1H), 7.19–7.46 (m, 5H); ¹³C NMR (CDCl₃) δ : 14.1, 18.9, 36.6, 65.2, 123.8, 127.0, 128.4, 129.0, 134.5, 136.7, 173.8; EI-MS *m*/*z* (rel. intensity) 204 (M⁺, 13).

3.3.26. Cinnamyl benzoate (9) [31]

92% as a colorless liquid; ¹H NMR (CDCl₃) δ : 4.98 (dd, J = 1.2 and 6.4 Hz, 2H), 6.40 (td, J = 6.4 and 15.9 Hz, 1H), 6.74 (d, J = 15.9 Hz, 1H), 7.20–7.37 (m, 3H), 7.38– 7.50 (m, 4H), 7.51–7.61 (m, 1H), 8.04–8.13 (m, 2H); ¹³C NMR (CDCl₃) δ : 65.6, 123.3, 126.7, 128.1, 128.4, 128.6, 129.7, 130.2, 133.0, 134.3, 136.2, 166.4; EI-MS m/z (rel. intensity) 238 (M⁺, 5).

References

- [1] (a) J. Otera, Chem. Rev. 93 (1993) 1449–1470;
- (b) M. Lin, T.V. RajanBabu, Org. Lett. 2 (2000) 997–1000; (c) T. Jin, S. Zhang, T. Li, Green Chem. 4 (2002) 32–34.
- [2] (a) A. Nudelman, Y. Bechor, E. Falb, B. Fischer, B.A. Wexler, A. Nudelman, Synth. Commun. 28 (1998) 471–474;
 (b) D. Seebach, E. Hungerbühler, R. Naef, P. Schnurrenberger, B. Weidmann, M. Züger, Synthesis (1982) 138–140;
 (c) S. Kim, J.I. Lee, J. Org. Chem. 49 (1984) 1712–1716.
- [3] (a) M.-C. Otto, J. Chem. Soc., Chem. Commun. (1986) 695–697;
 (b) D.F. Taber, J.C. Amedio Jr., Y.K. Patel, J. Org. Chem. 50 (1985) 1751–1752;
 (c) E. Vedeis, N.S. Bennett, L.M. Conn, S.T. Diver, M. Gringras, S.
- Lin, P.A. Oliver, M.J. Peterson, J. Org. Chem. 58 (1993) 7286–7288. [4] (a) G.A. Grasa, R.M. Kissling, S.P. Nolan, Org. Lett. 4 (2002) 3583–
- [4] (a) C.A. Grasa, K.M. Kissing, S.F. Nolai, Olg. Lett. 4 (2002) 5363– 3586;
 (b) G.W. Nyce, J.A. Lamboy, E.F. Connor, R.M. Waymouth, J.L.

(b) G.W. Nyce, J.A. Lamboy, E.F. Connor, R.M. Waymouth, J.L Hedrick, Org. Lett. 4 (2002) 3587–3590;

(c) G.A. Grasa, T. Güveli, R. Singh, S.P. Nolan, J. Org. Chem. 68 (2003) 2812–2819;

(d) R. Singh, R.M. Kissling, M. Letellier, S.P. Nolan, J. Org. Chem. 69 (2004) 209–212.

- [5] Y. Ishii, M. Takeno, Y. Kawasaki, A. Muromachi, Y. Nishiyama, S. Sakaguchi, J. Org. Chem. 61 (1996) 3088–3092.
- [6] A. Orita, A. Mitsutome, J. Otera, J. Org. Chem. 63 (1998) 2420-2421.
- [7] X. Hao, A. Yoshida, J. Nishikido, Tetrahedron Lett. 45 (2004) 781– 785.
- [8] P. Ilankumaran, J.G. Verkade, J. Org. Chem. 64 (1999) 9063-9066.
- [9] K. Ramalinga, P. Vijayalakshmi, T.N.B. Kaimal, Tetrahedron Lett. 43 (2002) 879–882.
- [10] T. Funatomi, K. Wakasugi, T. Misaki, Y. Tanabe, Green Chem. 8 (2006) 1022–1027.
- [11] Preliminary communication: Y. Shirae, T. Mino, T. Hasegawa, M. Sakamoto, T. Fujita, Tetrahedron Lett. 46 (2005) 5877–5879.
- [12] Recently zinc catalyzed asymmetric benzoation of meso-diol with vinyl benzoate using chiral triol type ligand was reported: B.M. Trost, T. Mino, J. Am. Chem. Soc. 125 (2003) 2410–2411.
- [13] R.W. Saalfrank, C. Deutscher, S. Sperner, T. Nakajima, A.M. Ako, E. Uller, F. Hampel, F.W. Heinemann, Inorg. Chem. 43 (2004) 4282–4372.
- [14] E. Gomez, R. Flores, G. Huerta, C. Alvarez-Toledano, R.A. Toscano, V. Santes, N. Nava, P. Sharma, J. Organomet. Chem. 672 (2003) 115–122.
- [15] C.J. Pouchert, J. Behnke, The Aldrich Library of ¹H and ¹³C FT NMR spectra.
- [16] A.K. Chakraborti, L. Sharma, R. Gulhane, R. Shivani, Tetrahedron 59 (2003) 7661–7668.
- [17] J.W. Bosco, A.K. Saikia, Chem. Commun. (2004) 1116-1117.
- [18] J. Bergman, L. Engman, J. Org. Chem. 47 (1982) 5191-5196.
- [19] J.A. Pincock, P.J. Wedge, J. Org. Chem. 59 (1994) 5587-5595.
- [20] T. Hirao, S. Santhitikul, H. Takeuchi, A. Ogawa, H. Sakurai, Tetrahedron 59 (2003) 10147–10152.

- [21] B. Shi, R.D. Guthrie, J. Org. Chem. 58 (1993) 3067-3071.
- [22] M.J. Cook, T.A. Khan, K. Nasri, Tetrahedron 42 (1986) 249–258.
- [23] S. Chandrasekhar, T. Ramachandar, M. Venkat Reddy, M. Takhi, J. Org. Chem. 65 (2000) 4729–4731.
- [24] The Aldrich Library of ¹H and ¹³C FT NMR spectra 2001 supplemental library.
- [25] B.A. D'Sa, J.G. Verkade, J. Org. Chem. 61 (1996) 2963–2966.
- [26] M. Noji, T. Ohno, K. Fuji, N. Futaba, H. Tajima, K. Ishii, J. Org. Chem. 68 (2003) 9340–9347.
- [27] S. Serra, E. Brenna, C. Fuganti, F. Maggioni, Tetrahedron: Asymm. 14 (2003) 3313–3319.
- [28] T. Shintou, W. Kikuchi, T. Mukaiyama, Bull. Chem. Soc. Jpn. 76 (2003) 1645–1667.
- [29] G.W. Daub, M.A. McCoy, M.G. Sanchez, J.S. Carter, J. Org. Chem. 48 (1983) 3876–3883.
- [30] M. Eriksson, A. Hjelmencrantz, M. Nilsson, T. Olsson, Tetrahedron 51 (1995) 12631–12644.
- [31] L. Engman, J. Org. Chem. 54 (1988) 884-887.